Applications Supporting Large Molecule Drug Development

Dan Trout
Janssen R&D
Legal Disclaimer

• This presentation reflects my personal view and does not purport to reflect the views of Janssen Research & Development, LLC or its affiliates
Presentation topics

• Monoclonal Antibodies and Bioreactors
• Bioreactor Laboratory Automation
• Feed Strategy and Observations
• Media Component Consumption
• Product Quality Measurement
• Downstream Processing
• Next Steps
• Summary
Monoclonal Antibodies (mAb)

• Monoclonal antibodies (mAb) treat several disease states.

• Examples of autoimmune diseases treated:
 – Rheumatoid arthritis (joint inflammation)
 – Crohn’s disease (inflammation of the bowels)

• Examples of oncology diseases treated:
 – B-cell lymphoma and melanoma
 – Ovarian, breast, gastric, and colorectal cancers
Bioreactors

Culture Conditions Impact mAb Production & Quality
- Temperature
- pH
- % Dissolved Oxygen
- Feed
 - Glucose
 - Amino Acids
 - Vitamins
 - Other Metabolites
Bioreactor Laboratory Configuration

Feed Pump

Raman Probe
Automation Network Integration

Bioreactor PCS

PAT Raman Analyzer PC

Model & PAT/PCS Integration PC
Feed Strategy

- Traditional feed strategy is a bolus feed once per day.
- Tested a continuous feed strategy based upon sustained glucose concentration (g/L) as measured by Raman spectra.

PAT System

Chemometric Model

[Glucose]

Logical Control

[Glucose] < Setpoint

Send Pump Setpoints based on Raman predicted Glucose Level
Glucose On-Demand
Observation: Sustained Increase in Glucose Level
Observation: Sustained Viable Cell Density
Observation: Improved mAb Production

Raman PAT Control Batch
Observation: Improved Lactate Profile
Observation: Reduced Ammonia (Cell Waste)
Analytical Samples

- Additional information for culture conditions and mAb quality
- 8 Reactors x 17 Culture Days x 1 Sample/Day = 136 Samples
- 136 Samples x 3 DoE’s = 408 Samples
 - Sample prep options:

 Option 1

 Option 2
Media Component Consumption

- Key media components include Glucose, Amino Acids, Vitamins, and other metabolites.
- Are we depleting media components over culture days?
- Analyze consumption of amino acids and production of NH3.
- Glutamine, Arginine, Tryptophan, Tyrosine, Serine, etc
Product Quality by Glycoform Analysis

- Glycoforms
 - Important to mAb structure
 - Metabolic pathways in patients.

- Are we forming mAb with desired target glycosylation profile?

- G0, G0F, G1F, G2F, Man5, Man6, etc.
Downstream Processing: Purification

- Cells are cultured in bioreactors expressing the antibody.
- Cell culture is harvested and the harvest is clarified.
- Antibody purification occurs in typically three steps:
 - Capture chromatography
 - Intermediate purification chromatography
 - **Polishing chromatography**

What are the Buffer system components associated with the high % Recovery?
Polishing Chromatography Buffer Screens

- Polishing chromatography is used to increase Mab purity from >90% to >98%.
- Conducted as center-point studies to optimize:
 - pH (Buffer reagents)
 - Conductivity (Salt)
 - Protein load
- Measurements of purification end points:
 - % Recovery
 - % Purity
 - Clearance of Aggregates/Impurities
Next Steps

• Continue Raman Calibrations for Chemometric modeling:
 – Lactate: alternative energy source to Glucose.
 – Ammonia: waste product and culture stressor.
 – Metabolites: amino acids, vitamins, and biochemical intermediates.
 – Viable Cell Density.
 – Titer
 – Product quality attributes?
 • Tertiary structure
 • Glycoforms

• Compound Development DoE’s using Continuous Feed Strategy

• Formalize Data Management
Next Steps

- Model and Execute Control Strategies

- Predicted Control
 - Control model for the multiple variable trajectories for optimum batch productivity with desired quality attributes.
Summary

• Gain Process Understanding and Develop Control Strategies for Monoclonal Antibody Production in Bioreactors

• Build Calibration Sets for Establishing Control Models
 - Design and Execute DoE’s
 - Collect PCS, PAT, At-line, and Off-line Measurements
 - Design Control Models

• Execute Models with Integrated Model/PAT/PCS application
 - Monitor Bioreactor PCS and In-line PAT measurements
 - Automated adjustment of Bioreactor PCS Settings to control batch trajectory for desired product amount and quality.
Acknowledgements

- John Cunningham
- Steve Mehrman
- Darryl Davis
- Nicole Migliore
- Robert Ahern
- John Schaefer
- Rebecca Sheridan
- Farial Fuad
- Priya Ramachandrula

- Nikunj Dani
- Paul Brodbeck
- Dave Strachan
- Chris Cox
- Donal Wylde
- Peter Huefner
- Matt Dempsey
Thank you!
Questions?